Blade Design

Blade Design

Without any doubt, the blades are the central component of any turbomachine. They transfer energy between a rotating shaft and a fluid, and depending on whether the turbomachine in question is a turbine, a compressor, a pump, a fan, or a propeller, they either extract energy from or impart energy to a continuously moving stream of fluid. Depending on the application, blade designs come in a large variety of shapes, which are typically defined by their cross-section and how it changes in spanwise direction. These properties largely determine the turbomachinery’s performance and can encompass rather large design spaces, which can only reasonably be inspected with automated workflows.

CAESES’ Blade Design Capabilities

CAESES® is a dedicated CAD and automation environment for exploring and optimizing complex and performance-critical geometries (see also this overview on turbomachinery applications). In particular, it brings along several key capabilities for designing state-of-the-art turbomachinery blade geometries:

  • Complete parametric blade modeling capabilities for radial, axial, and mixed flow rotors and stators.
Complete parametric blade modeling
  • Angle and shape preserving transformations for axial machine airfoil modeling.
Airfoil modeling
  • Flexible control of blade, wrap angle and thickness distributions for radial impellers.
Meridional Contours, camber and thickness distributions for blade design with CAESES
  • High level of customization, i.e., no black box models and full freedom to set up user-defined workflows.
  • Control of the blade shape via discrete parametric cross sections, continuous control via radial parameter distribution functions, or customized modeling approaches, e.g., for radially fibered or flank milled blades.
  • High robustness and flexibility of parametric models for automated design studies and optimization.
Flexible turbine blade design variation
  • Comprehensive tuning possibilities of shape details like root fillets, scalloping, leading edges, and blade tips.
  • Consideration of manufacturing constraints (e.g., flank milling, casting, additive manufacturing).
Manufacturing constraints for blade design

Learn More

Impeller Design with CAESES – Do it yourself!

1. Test the online demo model below.

2. Download CAESES®, register for a trial license, and open the impeller sample file downloaded in the previous step.

3. Watch the corresponding video for explanations.

4. Create a geometry from scratch with the impeller modeling tutorial in CAESES®.

CENTRIFUGAL PUMP


This is a demo of a fully-parametric centrifugal pump impeller. The final geometry can be downloaded as a STEP file that includes a flow domain or a solid domain. Also, you can download the CAESES project file.

LIVE PREVIEW

Case Studies and Blog Posts for Blade Design

Turbine Blade Design with Ansys CFD
Turbine Blade Design with Ansys CFD

Ansys CFD tools like Fluent or CFX are a popular choice for engineers when it comes to evaluating the fluid-dynamic behavior of their designs. When used in an automated design process, they require a suitable CAD tool that can reliably produce the different geometry variants to be analyzed. In our experience, a crucial bottleneck that we set out to solve with CAESES.

Turbine Blade Design with Ansys CFD
Turbocharger Turbine Blade Optimization
Turbocharger Turbine Blade Optimization

Turbine blade optimization including scallops for a turbocharger from the R&D project GAMMA, we developed a robust and variable geometry for a turbocharger turbine wheel, together with our customer MTU and the University Darmstadt (GLR). Aim of the project GAMMA…

Turbocharger Turbine Blade Optimization
Design of a Turbopump Inducer
Design of a Turbopump Inducer

This academic blog post describes how CAESES was used to design a parametric turbopump inducer geometry in conjunction with Ansys CFX.

Design of a Turbopump Inducer
sCO2 Turbine Blade Design
sCO2 Turbine Blade Design

The present work explores novel sCO2 axial turbine designs for waste heat recovery (WHR) applications based on a 10 MW case study. A Kulfan Class Shape Transformation (CST) for 2D axial blade profile design is employed, and considerations are undertaken for aerodynamic efficiency and mechanical stresses.

sCO2 Turbine Blade Design
Gas Turbine Blade Design at Siemens
Gas Turbine Blade Design at Siemens

In May 2015, we’ve started an exciting customization project together with SIEMENS, in the context of large gas turbines. Meanwhile, CAESES® has become a design tool at SIEMENS for the parametric design and optimization of turbine blades and endwall contouring…

Gas Turbine Blade Design at Siemens
Parametric Impeller Design
Parametric Impeller Design

The blade design capabilities of CAESES® have been completely reviewed with version 4.0, and a lot of great features have been added for the design and optimization of rotating machinery (pumps, turbochargers, turbines etc.). CAESES® is able to create any…

Parametric Impeller Design
Blade Design Video
Blade Design Video

With CAESES® 4.0, there is a lot of new and cool stuff for turbomachinery blade design. This post will give you a brief introduction into the fully-parametric design of an impeller blade, as you can typically find them in turbochargers…

Blade Design Video
Axial Blade Design
Axial Blade Design

With CAESES® 4.0, we have further fine-tuned our axial blade design capabilities according to the requests and wishes of our customers. We are also constantly receiving great feedback through our community forum. Thanks to everyone for contributing! We hope you…

Axial Blade Design
Asymmetric Profiles for Impeller Design
Asymmetric Profiles for Impeller Design

In one of our recent customer projects we needed to design a parametric impeller for a CFD-based optimization. The shape of the leading edge had to be asymmetric, which – so far – had not been smoothly supported by CAESES®…

Asymmetric Profiles for Impeller Design
GeomTurbo Export for Blade Designs
GeomTurbo Export for Blade Designs

In one of our last posts we briefly touched the topic of writing a custom export in CAESES®, e.g. to make use of proprietary export formats. Our customers use a variety of export formats, and even “standard” formats are often…

GeomTurbo Export for Blade Designs
previous arrowprevious arrow
next arrownext arrow
Turbine Blade Design with Ansys CFD
Turbine Blade Design with Ansys CFD
Turbocharger Turbine Blade Optimization
Turbocharger Turbine Blade Optimization
Design of a Turbopump Inducer
Design of a Turbopump Inducer
sCO2 Turbine Blade Design
sCO2 Turbine Blade Design
Gas Turbine Blade Design at Siemens
Gas Turbine Blade Design at Siemens
Parametric Impeller Design
Parametric Impeller Design
Blade Design Video
Blade Design Video
Axial Blade Design
Axial Blade Design
Asymmetric Profiles for Impeller Design
Asymmetric Profiles for Impeller Design
GeomTurbo Export for Blade Designs
GeomTurbo Export for Blade Designs
previous arrow
next arrow

Questions?

Please do not hesitate to get in touch with us if you have questions in the context of your specific application. We look forward to discussing it together with you!