Videos

Video Tutorials

As a new user, we recommend to start with the video tutorials. These short videos should give you a good start with CAESES®.


YouTube

Check out our YouTube channel, where we regularly post new videos.


YouKu (Chinese Videos)

We also have a channel on YouKu, the Chinese video portal, where some tutorial videos can be found.


What is CAESES?

A short summary of what CAESES does and who benefits from it, presented as an animated explainer video:


How to Efficiently Optimize your Geometry with Morphing in CAESES 5

In this webinar recording you can learn in detail how the morphing approach in CAESES 5 can be used to quickly optimize any existing geometry.

Catamaran Optimization using RBF in CAESES 5

NUMECA’s Marine CFD Workshop 2021

In this workshop recording you can watch the parametric modeling and hydrodynamic optimization of an electric catamaran ferry with the usage of RBF morphing techniques in CAESES 5 and the coupling to FINE™/Marine.


CAESES 5 Release Webinar: What’s New

This release webinar, puts a spotlight on our cutting-edge geometry modeling and shape optimization platform CAESES 5. It gives you a deeper insight into our latest developments and includes a live demo of

  • the new graphical user interface,
  • the App View to create a simplified and customized interface for complex project setups,
  • the Dimensionality Reduction Method for faster optimization,
  • the easy and powerful Morphing of imported geometries.

 HOLISHIP Webinar Series

In the R&D project HOLISHIP, FRIENDSHIP SYSTEMS developed innovative, holistic ship design optimization methods with a team of 40 European maritime industry and research partners. Several application cases from this project are presented in the this series of webinars.

Design Exploration of a Multi-Purpose Ocean Vessel

In this webinar, FRIENDSHIP SYSTEMS joins forces with the Naval Group to showcase the design exploration and optimization of a Multi-Purpose Ocean Vessel, as performed in the scope of the HOLISHIP project. In an initial concept phase, the baseline design is developed using a System Architecture and Requirement (SAR) management tool taking into account the different mission requirements and operating conditions expected.

CAESES is used in the subsequent contract phase for the multi-disciplinary exploration and optimization of the vessel with respect to stability, sea keeping, propulsion, and many more. A live demonstration will be given, focusing on the integration of HSVAs free surface panel code NuShallo within CAESES and the optimization strategies employed within this study.

Multi-Disciplinary Optimization of a Subsea Construction Vessel

In this webinar, FRIENDSHIP SYSTEMS joins forces with Kongsberg Maritime to showcase how CAESES has been used for the multi-disciplinary and complex design optimization of an offshore subsea construction vessel. An overview of methods and tools will be followed by a live demonstration of CAESES’ partially parametric modeling and geometry morphing capabilities. A live demonstration of a variation of the internal tank layout and the corresponding damage stability calculations will be presented to demonstrate the seamless integration of third party software, as required to set up an automated simulation-driven design process. The sophisticated workflows set up by Kongsberg Maritime in the context of the European research project HOLISHIP (holiship.eu) and beyond are a great example of the possibilities arising from state-of-the-art engineering amongst all industries.

Optimization of a Double-Ended Ferry with CAESES and CADMATIC

In this webinar, FRIENDSHIP SYSTEMS joins forces with Elomatic to showcase how the software systems CAESES and CADMATIC have been utilized for the optimization of a double-ended ferry with ice breaking capabilities for operation in the Finnish archipelago.


CAESES and Ansys for Turbomachinery Design Optimization 

In this webinar recording you can learn how the unique parametric modeling approach in CAESES can be used to optimize an axial turbine design in conjunction with Ansys Workbench.


Shape Optimization using CAESES and STAR-CCM+

Step-by-step guide to connect STAR-CCM+ to CAESES for the automation of the meshing and simulation process.


 

Volute Optimization by CAESES, GridPro and TCFD

This is a webinar recording which gives you a quick walk-through for the optimization of volutes, as given in turbochargers and pumps. CAESES, GridPro and TCFD are coupled to create a closed optimization loop.


 

Axial Turbine in CAESES

This short video summarizes how an axial turbine blade is set up in CAESES. The hub and shroud curves are defined as well as the custom profile using feature definitions. The geometry generation process can be fully automated for CFD-driven shape optimization e.g. on cluster systems.


 

Axial Fan Optimization Workflow using CAESES and TCFD

This is a webinar recording about coupling CAESES and TCFD from CFD Support for the design and optimization of axial fans and related turbomachinery components.


 

Optimization of Ship Hulls with CAESES and NavCad

This is a webinar recording about coupling CAESES and NavCad for the design and optimization of ship hulls.


 

Design Studies and Optimization with CAESES and Simerics-MP

This is a webinar recording which talks about the design and optimization of pumps and valves. The two software packages CAESES and Simerics-MP are coupled to fully automate the design and optimization process.


 

CAESES for Powertrain Applications

In this webinar, R&D CFD – the CFD consultancy with extraordinary expertise in the field of powertrain – and FRIENDSHIP SYSTEMS – the provider of unique CAE solutions for simulation-driven design – are joining forces to show you how CAESES® can be used in applications related to the design and optimization of powertrain components, such as ports, manifolds or in-cylinder geometries. We give you an idea of what distinguishes CAESES from other tools, what your benefits are and, most importantly, demonstrate the capabilities and the workflow on a relevant real-live example.


 

CFD Flow Domain for Ship Hulls from NAPA IGES Files

Short video about how to create a closed and colored flow domain for ship hull geometries. As a starting point, IGES files from NAPA or other CAE/CAD systems are imported. By means of healing and Boolean Operations, the box-like flow domain gets created in a fully-automated way. It can then be readily meshed by grid generation tools. More information can be found in the corresponding blog post.


 

Turbo Inlet Duct Design

This is a short video about turbo inlet duct design in CAESES®. More information can be found in the full article.


 

Generate Streamlines from SHIPFLOW CFD Results

This video shows you how to generate streamlines from CFD results in CAESES®. More information can be found in the full article.


 

Browser-Based Ship Hull Optimization with CFD

This is a short video that emerged from the CAESES® SMM 2016 OSV Challenge. The application is browser-based while both geometry generation (CAESES®) and CFD simulation run silently on a remote machine. More information can be found in this blog post.


 

Parametric Flow Domain of an Impeller

This video shows how to create a parametric and periodic flow domain for an impeller of a turbocharger or pump.


 

How to Create a Propeller Blade Tip

This is a very short video that shows how to create a smooth blade tip for maritime propellers. The tip region is often a problem because of the singularity for which a specialized surface is needed.


 

Webinar: CAESES® and SimScale – Part 1

This is the first recording of a webinar from June 2016. The original title is “Simulation-Based Design of Complex Geometries using CAESES® Free and SimScale”. In this webinar the tool combination CAESES® Free and SimScale gets presented. An axial fan is modified and it is shown how a manual variant can be created in CAESES®. In a next step, the workflow on the SimScale platform is demonstrated. Update: CAESES® Free is not available anymore, but there is a full pro version for students and PhD students.


 

Webinar: CAESES® and SimScale – Part 2

This is the second recording of the webinar from June 2016. It gives a more detailed look into the modeling procedures and feature techniques in CAESES®.


 

Webinar: Getting Started with CAESES®

This is the recording of a webinar from January 2016. It is about 1 hour and it gives you a good overview of CAESES®, and how to get started with it. More specialized videos can be found below.


 

Webinar: CAESES® as a GUI for OpenFOAM

This is the recording of a webinar from March 2016. In this video we show how to connect an existing OpenFOAM setup to CAESES®, and how to use it for design studies and fully automated shape optimizations.


 

Webinar: F1 Aerodynamics Workshop Series – Session 3

This is the recording of the third session of a joint workshop series that was jointly given by FRIENDSHIP SYSTEMS and SimScale. In this video we explain how to design and optimize the rear and front wings of F1 race cars, using CAESES® as the central design tool.


 

Tutorial Impeller Blade

CAESES® is a dedicated tool for parametric blade design of any kind of turbomachinery blade. This video gives an introduction to impeller blade design. Check out this post for more information.


 

Basics of Volute Modeling for Turbochargers and Pumps

CAESES® is a great tool for intelligent design of volutes for pumps and turbochargers. This video gives an introduction to modeling the main surface of a volute. In order to keep it easy, the cross section is a simple circle for which the area can be controlled in circumferential direction. CAESES® comes with a set of example volutes which are more complex. If you interested in creating your own model, don’t hesitate to get in touch with us. We can support you so that you have your model ready in just a few days.


 

Axial Fan Optimization

Check out this nice video which shows the entire process of parametric fan modeling, CFD integration and automation using STAR-CCM+, as well as CFD postprocessing in CAESES®:


 

Hello Dakota

With version 4.0, CAESES® integrates smoothly with Dakota, the free optimization toolkit from Sandia Labs.


 

Free Form Deformations on a Fuel Injector

With version 4.0, CAESES® offers free form deformations (box deformations) to allow users to quickly and easy modify existing geometries (e.g. imported ones). These capabilities greatly complement the parametric CAD functionality of CAESES® so that for each situation there is the right method available to conduct shape studies and optimizations.


 

Free Form Deformation Tutorial

This is a short video that shows the basic process of how to set up a free form deformation in CAESES®. First, a simple duct is imported using STL data. In the next step, a bspline box and a free form deformation are created and configured so that the initial “dead” shape can now be squeezed and pulled.


 

Flow Transformer: Geometry Creation

This is a step-by-step video that was derived from a blog post. It shows the geometry creation of an simple automotive component where pattern-based structures are set up using solids (breps) and boolean operations.


 

Skeg Modeling for a Ship Hull in 2 Minutes

This is a very short video that shows how a skeg model can be created in CAESES® and how it is automatically attached to a bare ship hull.


 

CAESES®

This is a rather old video but still gives you a first idea of what is CAESES® all about. Note that we had two re-branding phases within the last years, which is the reason that some videos still show the former product names (“CAESES / FFW” and “FRIENDSHIP-Framework”). Today, it’s simply called CAESES®. The upfront CAE-software CAESES® and its free version CAESES® Free focus on the simulation-driven design of flow-exposed products. Main features are parametric 3D modeling, tight CFD integration and automated shape control for systematic studies and formal optimizations.


 

Axial Fan

Axial fans and other rotating geometries can be easily parameterized in CAESES®. This video gives you a short demonstration of a parametric fan model, along with an automated pitch variation of the blade. The geometry model is specialized for automated processes and can be directly utilized in CFD-based optimizations using commercial or non-commercial CFD packages. CAESES® is generalized software for parametric design and optimization of any complex geometry with flow-related tasks. In particular, there are dedicated methods for turbine and compressor blades as well as for maritime propeller design.


 

Blade Design with Meridional Camber Curve

This video demonstrates the new capabilities of version 3.1 using the meridional camber curve for impeller design. This curve is mostly used for pump design.


 

Centrifugal Impeller Design

CAESES® provide everything that is needed for blade design, in particular in the context of simulation-driven design. In this video, an example of a centrifugal compressor is shown. The model was built from scratch and can be controlled by typical blade parameters. Everything can be fully customized, i.e. this is not a black box model – there are no restrictions to the profile shapes etc! This example is shipped with the software and can be found in the documentation browser.


 

Turbine Blade

Design and optimize axial blades such as turbine and compressor blades. This video gives a brief overview about the design steps. The stream section curve type is focused; it does the job of mapping a 2D profile into the 3D space, while taking into account meridional curves and stacking axis. The parametric model in this video is part of the samples section in CAESES®.
Note that the video shows a bit more (e.g. some profile checks) than you actually need for a blade design. To boil it down, in the end you only need a feature definition with a stream section. Create a curve engine and connect your stream section definition with the radial distributions for your profile parameters. Create a meta surface based on this engine. That’s it. Maybe 20-30 minutes of work if you already have a 2D profile description.
The stream section itself can cope with angle- (m’,theta) and length- (m,r*theta) preserving profile definitions. With version 4.0, we also support the system (z,r*theta).


 

Propeller Design

This video gives a brief introduction to propeller design in CAESES®. The so-called generic blade and cylinder transformation are provided for design of fully-parametric maritime and non-maritime propeller blades including parametric profile design and user-defined rake, skew and pitch distributions. Multiple profile types within one blade via blending functions are possible. Ready-to-use NACA profiles can be directly used. Set up your own mathematical formula and geometric curve definitions of profiles, mean camber and thickness distributions. There is a 2D drawing functionality available for propellers and a PFF-Import/Export (Propeller Free Format). Furthermore, blade analysis of imported surface geometry is provided, e.g. for reconstruction of parametric models.


 

Container Vessel

In this video selected parameters of a ship hull are changed in order to modify the shape. The model was set up from scratch and is included in CAESES®. It can be used as is or might serve as a starting point for your own individual parametric model of a container vessel. The software comes with a set of different ship types, e.g. yachts, tanker, bulker and supply vessels as well as functionality for parametric design of maritime propeller blades.


 

Connecting STAR-CCM+

Starting with version 3.0 of CAESES®, it is now easier to connect any simulation tool to the GUI. This video shows the single steps of the STAR-CCM+ coupling process. As a prerequisite, a STAR-CCM+ setup (sim file) is assumed to be given along with a set of JAVA macros. These files are then used for utilizing STAR-CCM+ in batch mode. As an example, a parametric s-duct geometry is modified and analyzed by STAR-CCM+. Finally, some of the post-processing capabilities of CAESES® are shown.


 

Connecting XFlow

This video gives a brief overview of the connection to XFlow.


 

Automated Variation of Geometry

In this short video tutorial design variants are created from a parametric baseline model. For demonstration purposes, a simple wing design is utilized that has been created before in CAESES®. These models and their variants can be directly coupled to commercial and non-commercial CFD-packages.


 

Introduction to Feature Definitions

This is a short introduction to Feature Definitions (FD) in CAESES®. With FDs, you can fully customize the software to your needs by encapsulating command sequences and by writing your own macros. Examples are custom curve types, proprietary import and export formats, functions etc. This video helps beginners to get familiar with the basics of this powerful functionality. Really a recommendation!!!


 

Design Viewer

The design viewer is a CAESES® widget that allows you to compare your generated design variants in a single window. The design variable values are listed along with constraints and objective values. Screenshots of the geometry and flow results as well as an interactive 3D geometry are available for detailed assessement. Here is a very short video that shows the design viewer:


 

Documentation and Commands

This video gives a short introduction to project and object documentation, as well as how to detect dependencies between objects etc. Recommended for beginners.


 

Introduction to the Graphical User Interface

This video gives a general introduction to the graphical user interface of CAESES®. Recommended for beginners.