Jump to content

Search the Community

Showing results for tags 'geometry'.

The search index is currently processing. Current results may not be complete.


More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • CAESES®
    • General Modeling
    • Software Connections
    • Variation & Optimization
    • Post-Processing
    • Feature Programming
    • Installation
    • Miscellaneous
    • Ideas and Suggestions
    • FAQ

Categories

  • Articles
    • Forum Integration
    • Frontpage
  • Pages
  • Miscellaneous
    • Databases
    • Templates
    • Media

Blogs

  • Mr. Arne Bergmann's Blog
  • FSYS DAEHWAN PARK
  • Mr. Arne Bergmann's Blog
  • Rel 3.1
  • Joerg Palluch's Blog

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 3 results

  1. CAESES is used for the parametric design of axial fans and similar turbomachinery products, mostly in the context of simulation-driven shape optimization. In particular, CAESES is used if you need robust variable geometry models for automated studies. The comprehensive CAD modeling capabilities are geared towards simulation and give fan designers full flexibility (no black box, customization possibilities). More information about turbomachinery design software can be found here. I have also attached a few animations that were generated in CAESES. The design variables of the axial fan model were varied automatically using the integrated variation methods. Note that this is a rather simple model which is also shipped with the software. It can be used as a reference design to set up custom models. The hub and shroud modeling is demonstrated, as well as the 2D-3D mapping of the cylindrical sections and some Boolean Operations to cut the blade at the tip and merge it with the hub. The fillet size can also be controlled by a parameter. If needed, you could also automatically derive the periodic flow domain for automated meshing with grid generation tools or CFD packages.
  2. Hi, In my project, I create curves, then revolve the curves to create surface geometry. Next, I use surface groups to group all surfaces together. My question is: how do I create solid geometry from surface geometry to simulate in Star CCM++? curve_body_AUV.cdbc
  3. Parametric models are typically built from various geometric or non-geometric entities, e.g. a projection curve depends on the curve that is going to be projected and the surface it is supposed to lay on. In most programs the user creates the desired object first (in this case the projection curve) - and is subsequently asked to supply the necessary objects (surface, curve and possible projection direction) until the configuration is complete. In CAESES/FFW missing information is indicated by a * next to the required attribute and you can set the relationship via drag and drop or typing. However, if you have selected a surface and a curve already when creating the projection curve, they will be automatically associated to the attributes. Note: Whenever the selection set fits to a creator called, the attributes will be set immediately. For every object you will find a list of available creators in the type documentation.
×
×
  • Create New...