BCAESES

Loops

In the previous tutorial you have been introduced to the feature programming language and the
first control structures for executing code based on conditions. This tutorial teaches you the use
of additional control structures that allow you to implement iterative algorithms by using the

various options to implement loops.

As an example, an analyzer for IGES files is implemented. The number of curves inside an IGES

file is counted and the length of the longest curve is extracted.

(F] Feature Definttion Editor - IGESAnalyzer O B4V —-—0DX

General | Feature Definitions | Arguments 8RN gihleill Y| Attributes

NPl DOD(N I E %S| @

(o)

1 { FFile f(file.getFileName())
2 tAf (!'f.exists())
3 echo("Invalid input file, file does not exist.")
4 break ()
5 endif
6
7 ¢ genericimport importer ()
8 | importer.import(file.getFileName())
9 ¢ fobjectlist imported(importer.getlastImportedObiects())
10
11§ unsigned curveCount (0)
12 double maxlLength(-1)
13
14 it foreach (FCurve c in imported)

15 curveCount += 1

16 maxlLength = max (maxLength, c.getlLength())

17 - endfor

18

19 | echo("BEnalysis result for file "™ + file.getFileName() + ":")
20 echo ("Number of curves: " + curveCount)

21 i echo("The longest curve is " + maxLength + " units long™)
22

Breakpoints
Line 18 Column 1 INS|

£7 Evaluate v Apply Close

B CAESES

New Feature Definition

Remember: The feature definition is the “template” and represents the

basis for the resulting features. It contains the (programmatic)

description of the feature’s behavior.

» Create a new definition by selecting features > new definition.
» Enter “IGESAnalyzer” in the type name field (general tab).

» Enter “IGES Analyzer” in the label field.

» Disable the is drawable checkbox.

[F) Feature Definition Editor - IGESAnalyzer O H4Y —DO X

Feature Definitions = Arguments = Create Function | Attributes

)

Name

Type Name | IGESAnalyzer
Label IGES Analyzer
Last Edited: 2016-01-04T13:04:07

" Reload

[] save Protection

Enable Persistent

Enable Transient

[] 1s Drawable

["] Update Only On User Request
Recreate on Update

[] Default preview enabled

["] Default automatic update

L’J Documentation

£1 Evaluate v Apply Close

B CAESES

Arguments

Our feature needs to know which IGES file it is supposed to analyze.

Therefore, we introduce an argument that holds the file’s name.

[F) Feature Definition Edttor - IGESAnalyzer O B 4Y —D0O x

General | Feature Definitions
Type
& FFieln - file resolveEnv("$TUTORIALSDIR")+"/06_hul_design/containervessel.iges” [[}

Create Function | Attributes ?)

Default Value Allow Expression Required

» Select the arguments tab.

» Select FFileln from the pull-down list in the column type and enter “file” as name.
» For a default input value, enter the following:
resolveEnv("$TUTORIALSDIR")+"/06_hull_design/containervessel.iges"
» Deselect allow expression and select the required checkbox.
» Enter “Filename” into the column label.
» Press the apply button in the lower right corner of the dialog.
» Go to the object tree and open the node feature definitions from the CAD tree.
» Right click on the feature definition “IGESAnalyzer” and select create feature.
» Open the node baseline and click on the newly created feature “f1”.
» Rename “f1” to “analyzer”.
@Q Connections | [3 Optimization @ | B2=4)r 1 N0 x
Type ™ Name Quick Find (Ctrl+F)
4 B baseline [F) | analyzer s o [/
FFeature::... + [F) analyzer
4 [F) Feature Definitions]
FFeatureD... F IGESAnalyzer File C:/opt/CAESES/tuterials/06_hul_design/containervessel.iges] ?

As you can see, the feature has one argument called “Filename”. Since we have used FFileln as
the type and selected not to allow expressions, the input is a file select box with a button next to
it which allows you to browse the file system. The filename is already filled with the default
value we have assigned to it. The part “resolveEnv(“$TUTORIALSDIR”)” was expanded to the

directory that contains the tutorial files.

v

Additionally, there are some variables built in to CAESES that, for example, reference the

The command resolveEnv() can be used to utilize environment variables of your system.

installation directory, the samples directory or (like in this case) the tutorial directory. To see a

complete list of variables along with their current value, type env() into the console.

vvyyvyy

B CAESES

Create Function

The feature now has the name of the IGES file it is supposed to analyze.

Now we need to fill the create function to perform the actual analysis.

Go back to the feature definition editor.
Select the create function tab.
Paste the text below into the text editor - it will be explained line by line.

Press apply.

Frile f(file.getFileName())
if (!'f.exists())

echo("Invalid input file, file does not exist.")

break ()
endif
genericimport importer ()
importer.import (file.getFileName ())
fobjectlist imported(importer.getLastImportedObjects())
unsigned curveCount (0)
double maxLength (-1)
unsigned index (0)
while (index < imported.getCount())

FCurve c(imported.at (index) .castTo (FCurve))

if(! ('e))

curveCount += 1
maxLength = max (maxLength, c.getlLength()

endif

index += 1
endwhile
echo("Analysis result for file " + file.getFileName() + ":")
echo ("Number of curves: " + curveCount)

echo ("The longest curve is " + maxLength + " units long")

B CAESES

Run the Analyzer

The feature can now be run. Note that it does not “update” and start

automatically (e.g. it is not a drawable object that needs to be updated for

visualization). Let’s create and trigger the feature:

» Go back to the object tree and select the feature “analyzer” again. If it is already selected,
deselect it and select it again (this refreshes the feature interface in the object editor).

» Press the “Run” button in the main toolbar or choose from the context menu.

MQ Connections n Optimization . *

Type N Name Quick Find (Ctr+F)

4 - baseline E
FFeature::... - B [Z edit

4 [5 Feature Definiti F
FFeatureD... F] 1GESAnalyze () copy

Detach

v Update on demand

The output will vary depending on the directory where you installed CAESES. Now let us take a

look at the code line by line. Note that CAESES does not support the full IGES specification. That

is why the two warning lines are echoed to the console. However, for our task, they can be

safely ignored.

**% INFO importing IGES fie : ...

HW IGES v1.9.17

**% INFO imperting IGES fie : OK

HarmonyWare Translators*

HarmonyWare IGES v1.9.13*

Analysis result for file C:/opt/CAESES/tutorials/06_hull_design/containervessel.iges:
Number of curves: 4

The longest curve is 204.45 units long

=2

B CAESES

Validating the Input

Let's have a look at the first couple of lines. They perform a check of

whether the given filename denotes a valid file. To do so, it uses the

already known if/else-statement.

FFile f(file.getFileName ())

if (!f.exists())
echo("Invalid input file, file does not exist")
break()

endif

First an object of the type FFile is created with the given name “f”. Objects of that type can be
used to manually read and write files. In order to make sure that our file exists, we use an
if-statement. The command exists() checks whether the given filename denotes an actual file. If
that fails (i.e. the command returns false) we can be sure that the following import would fail, so
we inform the user that there is a problem with the file and exit the feature by using the break-

keyword.

B CAESES

Importing the IGES File

Now that we know that the given filename actually denotes an existing

file, we import it using the provided IGES interface.

genericimport importer ()
importer.import (file.getiileName ())

fobjectlist imported(importer.getlLastimportedObiects ())

The first line creates an object that is able to read IGES files called “importer”. The command
import() does the actual import of the given file. In the last line the objects that were imported
are stored in a list (type FObjectList). This type of object is a container for objects of arbitrary
types. So any type of object can be stored inside such a list (e.g. FCurve, FPoint, FDouble,...). Since
imports can return various object types, they provide such a list that contains all objects that

were imported.

B CAESES

Prepare the Iteration

Now that we have the imported objects inside a list (called “imported”),

we can start iterating through them. To prepare this iteration, we define

some variables that store the iteration results and some which help the process of iterating.

unsigned curveCount (0)
double maxLength (-1)

unsigned index (0)

These lines define three variables. The first two will hold the result of our analysis, while the
third one holds the current index that we are currently looking at. As the name suggests, the
variable “curveCount” will be used to count the number of curves inside our object list. The
variable “maxLength” stores the length of the longest curve that is present. The variable index is

the counter variable that holds which object in the list we are currently looking at.

B CAESES

Iterating using While

Now the actual iteration starts. This is done by using a while-statement.

The basic syntax is as follows:

while (<condition>)
// these lines will be executed as long as <condition> is true

endwhile

It basically ready like this: “Execute the following lines as long as the given condition is true”.
Similar to the if-statement, the condition needs to be a boolean expression that can be evaluated
as either true or false. If it is true, the lines up until the endwhile-keyword are executed. The

condition is then evaluated again. This continues until the condition is no longer true.

In our case the condition checks, whether the index variable is smaller than the total number of
entries in the list of imported objects. As long as that is the case, the body of the while-statement

is executed.

‘/ Indexing in lists starts at index “0”.

B CAESES

Disecting the While Body - Part 1

Now let us take a look at the steps performed for every element inside

our list:

FCurve c(imported.at (index) .cacstTo (FCurve))

First of all, we need to know whether the object at the current index is a curve. We take the
object at the current index by using the objectlist’s at() command. The returned object is then
checked whether it is a curve. This is done by using the castTo() command. That command is
available for any object and will try to convert it to the type given as an argument to the
command. If the conversion fails the command returns NULL (i.e. no valid object). Since we are
interested in curves, we try to convert the object to an FCurve. The success of that conversion is

checked by the next line.

if (! (lc))

This applies the already well-known if-keyword. However, the condition needs some

wn

explanation. An object can be checked whether it is NULL, by using the “!” operator (read: NOT-

operator). Since there is no YES-operator, we emulate such an operator by double negation. So

if the inner “!” “”

operator returns false (i.e. object c is not NULL) the outer “!” operator returns

true, which shows us that c is a valid object of type FCurve.

10

B CAESES

Disecting the While Body - Part 2

Now that we know, that we found a curve, we increment the variable

that counts the number of curves in the IGES file

curveCount += 1

The “+=" operator is the shorthand version of writing

curveCount = curveCount + 1

So it takes the current value of the variable “curveCount”, increments it by the number given

and stores the result back into the variable “curveCount”.

Finally, we need to check whether the current curve is the longest curve:

maxLength = max (maxLength, .getLength ()

The command max compares its two arguments and returns the larger one of the two.

The last line inside the body of the while-statement is very important:

index += 1

Again, the “+=" operator is used to increment our index-variable. This is very important, as the
index-variable is part of the while’s condition. If we forget to increment it, the loop will be
running forever. Now, execution will jump back to the while-keyword, evaluate the condition
and keep on executing the body until the condition is evaluated to false. After the loop is done,

the result of the analysis is printed to the console using the already known echo() command.

v

allows stopping the loop’s execution after a certain number of times (100000). However, it may

If we forget to increment the index variable, an internal safety net will become active, that

take a while before that limit is reached.

11

B CAESES

Using Foreach

The foreach-statement allows you to write the previous example in a

more concise way. Take a look at the altered code:

Frile f(file.getFileName())

if (!f.exists())
echo("Invalid input file, file does not exist.")
break ()

endif

genericimport importer ()

importer.import (file.getFileName ())

Hh

objectlist imported(importer.getlLastImportedObjects())
unsigned curveCount (0)
double maxLength (-1)
foreach (FCurve ¢ in imported)
curveCount += 1
maxLength = max (maxLength, c.getlength())
endfor
echo("Analysis result for file " + file.getFileName() + ":")

ech

O ("Number of curves: " + curveCount)

echo("The longest curve is " + maxLength + " units long")

In this sequence, the while-statement was replaced by foreach. That control statement
automatically iterates over a given object list and executes its body for all objects inside the list
that have the given type. Each of those objects can be accessed using the name given inside the
parentheses of the foreach-statement. In this way, the index variable is no longer needed and
the manual check of whether the current object is a curve is also not needed. So the basic syntax

is as follows:

foreach (<Type> <objectname> in <objectlist>)

endfor

12

B CAESES

Conclusion

In this tutorial you have learned how to use the while and the foreach

statement for iterating over lists. The third statement to create iterations
is the loop-statement. As opposed to the while-statement it does not run as long as a given
condition is true, but for a fixed number of times. Besides the given use-case of iterating over

lists, such statements are commonly used to implement iterative algorithms.

There are more ways to define loops, see the following two short examples (they just plot a

message into the console window):

unsigned n(100)
loop (n)
echo("This is loop " + $$i)

endloop

Note that “$$i” is a reserved expression that gives you the current loop number, in this example

the values 0 to 99.

You can also use goto statements:

unsigned n(0)

myLoop (n) :
echo("This is loop " + n)
n += 1

if(n < 100)
goto (myLoop)

endif

The label “myLoop” is arbitrary; you can use any label that is then referenced in the goto

statement. Do not forget to increment your counter (“n+=1") in such a statement.

13

