
Tutorial

Functions

In this tutorial a feature is defined that creates the Sierpinski triangle. For such a mathematical

structure we have to repeatedly create triangles. The subtask of creating a single triangle is

defined in a function that is directly embedded in the feature definition. We can then simply call

this function multiple times in a recursive sequence.

Functions can ease your work with feature definitions. In particular, they make your command

sequence more readable and easier to maintain.

 See also the feature samples in the documentation browser where so-called nested features

are demonstrated. Instead of a function, a complete feature definition can also be embedded and

used in another feature definition.

Tutorial

2

1
New Feature Definition

We start from scratch by creating a new feature definition. This

definition will later create the entire Sierpinski triangle.

► Create a new definition by selecting features > new definition.

► Enter “Sierpinski” in the type name field (general tab).

► Enter “Sierpinski Triangle” in the label field.

The Sierpinski triangle needs a starting triangle (three vector positions) and a depth that

defines how often the recursive triangle creation will be executed.

► Choose three FVector3 arguments for the positions; call them a, b and c and set some

default values (see screenshot).

► Choose an FUnsigned argument for the depth and set a default value of “3”.

 We chose the type FUnsigned for “depth” since we expect only positive integer values

(“unsigned integer”). If you would like to allow negative input values for your definitions,

then choose the type FInteger.

a

c

b

Tutorial

3

2
Function for Triangle Creation

Creating a triangle is a rather simple task that can be encapsulated in a

function. This is done in this step. The function takes three vector

arguments “p1”, “p2” and “p3” (type fvector3) and creates a triangle by using a ruled surface

between two lines. An entity group called “triangles” is also defined. It is our container that will

store all upcoming triangles.

► Click on the tab create function and type in the following sequence:

► Press evaluate to check that are no typing mistakes.

 You can copy & paste the sequence from above. Remember: If you type in commands

manually, use auto-completion while typing. For instance, type “rule” + CTRL + SPACE: This

provides the command for the ruled surface (next to other commands that start with “rule”).

entitygroup triangles()

function createTriangle(fvector3 p1, fvector3 p2, fvector3 p3)

 line L1(p1,p2)

 line L2(p1,p3)

 ruledSurface surf(L1,L2)

 surf.setUResolution(1)

 surf.setVResolution(1)

 triangles.add(surf)

endfunction

Tutorial

4

3
Recursive Function

Next we will define the recursive function that calls the function from the

previous step.

► Extend the definition by typing in the following sequence after the function

“createTriangle()” from the previous step:

The function “splitTriangle()” calls itself three times again as long as the depth constraint

“(currentDepth > depth)” is not violated.

► Press evaluate.

 The command “return()” terminates the feature execution at this point.

function splitTriangle(fvector3 p1, fvector3 p2, fvector3 p3,

unsigned currentDepth)

 if (currentDepth > depth)

 createTriangle(p1,p2,p3)

 return()

 endif

 fvector3 mid1((p1+p2)/2)

 fvector3 mid2((p2+p3)/2)

 fvector3 mid3((p1+p3)/2)

 unsigned d(currentDepth)

 d += 1

 splitTriangle(p1,mid1,mid3,d)

 splitTriangle(mid1,p2,mid2,d)

 splitTriangle(mid2,p3,mid3,d)

endfunction

Tutorial

5

4
Initiate Creation of Sierpinski Triangle

So far, there are only two functions and we still have to initiate the

creation of the Sierpinski triangle. Thus, we have to call the function

“splitTriangle()” with the input arguments “a”, “b” and “c” that are provided by the user.

► Type in the following after the function “splitTriangle” press apply and close the dialog:

Here is a final screenshot:

splitTriangle(a, b, c, 0)

Tutorial

6

5
Create a Feature

Finally, we can now create a feature from this definition in order to test

our Sierpinski triangle.

► Create a feature from the context menu of the definition “Sierpinski”.

► Change the input values of the created feature “f1” in order to check whether it works

correctly. Switch into the z-view (button in the 3D view).

	Functions
	New Feature Definition
	Function for Triangle Creation
	Recursive Function
	Initiate Creation of Sierpinski Triangle
	Create a Feature

