
Tutorial

Case-by-Case Analysis

This tutorial introduces the feature programming language and shows how control structures

can be used to perform case-by-case analysis.

As an example, a simple quiz is written. The player of the quiz (i.e. yourself) will try to match a

number that gets generated by the feature.

Tutorial

2

1
New Feature Definition

Remember: The feature definition is the “template” and represents the

basis for the resulting features. It contains the (programmatic)

description of the feature’s behavior.

► Create a new definition by selecting features > new definition.

► Enter “SimpleQuiz” in the type name field (general tab).

► Enter “Match the Number” in the label field.

► Disable the enable transient checkbox.

► Disable the is drawable checkbox.

► Enable the default automatic update checkbox.

 This is a basic setup of the feature definition. It is called “SimpleQuiz” and will be labeled

“Match the Number” in menus. It is a type definition since only persistent creation is enabled and it

will not be displayed in the 3D-view because of disabling the checkbox is drawable.

Transient execution (“Enable Transient” in the screenshot) is equivalent to macro systems: it is a

series of commands that get executed. No feature object is then available in the tree.

Tutorial

3

2
Arguments

First of all, our quiz needs a question. The input to the question is the

argument that is then passed to the programmed logic.

► Select the arguments tab.

► Select FInteger from the pull-down list in the column type.

► Enter “try” as name for the input.

► For the default value, enter “10”.

► Deselect allow expression.

► Select the required checkbox.

► Enter “Try a number between 0 and 100” into the column label.

Now we created the user interface for our little quiz. It’s time to take a first look at it.

► Press the apply button in the lower right corner of the dialog.

► Go to the object tree and open the node feature definitions from the CAD tree.

► Right click on the feature definition “SimpleQuiz” and select create feature.

► Open the node baseline and click on the newly created feature “f1”.

► Rename “f1” to “quiz”.

You can enter any integer number into the single input field of “quiz”. However, so far nothing

happens when you do so. Now we need to implement the game logic.

Tutorial

4

3
Create Function

Now that the question for our quiz is complete, we need to evaluate the

“try” and give a result to the person taking the quiz. This is done in the

command sequence defined in the create function.

► Go back to the feature definition editor.

► Select the create function tab.

► Paste the following text into the text editor – it will be explained line by line.

► Press apply.

► Go back to the object tree and select the feature “quiz” again. If it is already selected,

deselect it and select it again (this refreshes the feature interface in the object editor).

► Enter a number between 0 and 100 in the text field and watch the console window.

Depending on the quality of your try, the console output will either read “Congratulations, you

are spot on!” or (more likely) “No that was not the number” and in a new line “The number I

was thinking of was “ followed by a number between 1 and 100. Now let us take a look at the

code line by line.

iinntteeggeerr vvaalluuee((((rraanndd(()) ** 110000))..ttooUUIInntt(())))

iinntteeggeerr ddiiffffeerreennccee((aabbss((vvaalluuee -- ttrryy))))

iiff ((ddiiffffeerreennccee ==== 00))

 eecchhoo((""CCoonnggrraattuullaattiioonnss,, yyoouu aarree ssppoott oonn!!""))

eellssee

 eecchhoo((""NNoo,, tthhaatt wwaass nnoott tthhee nnuummbbeerr..""))

 eecchhoo((""TThhee nnuummbbeerr II wwaass tthhiinnkkiinngg ooff wwaass "" ++ vvaalluuee))

eennddiiff

Tutorial

5

4
Types and Conversion

Let’s have a look at the first line. The number to match needs to be

generated. This is done with this line:

In order to understand that line, we need to analyze it starting from inside the most inner

parentheses. The command rand() returns a randomly generated value between 0 and 1. Since

we are looking for a number between 1 and 100, it is then multiplied by 100. As the number to

match is supposed to be an integral value, and the result of the multiplication is still a floating

point number, it is converted using the toUInt() command. The result of that command is then

stored in a variable called “value” which is defined to be of type unsigned integer.

 As a shortcut to pressing the apply button you can also use the keyboard shortcut CTRL+S.

 Converting a floating point number to an integral value using the toInt() or toUInt() command

cuts of the decimal places but performs no rounding. If you want to add rounding, you should add

“0.5” to the floating point value before using the toInt() command. Alternativey, use the global

commands floor() and round(). See the documentation browser for more information.

The integral type integer can also be abbreviated to int. Another integral type is unsigned (or uint)

which represents positive integers only.

iinntteeggeerr vvaalluuee((((rraanndd(()) ** 110000))..ttooUUIInntt(())))

Tutorial

6

5
Types and Conversion

Now that the value to match has been generated, the next line calculates

how far the user’s “try” is off.

Just like the first line, it is easiest to read the line from inside to outside. The difference between

the try and the generated value is calculated by subtracting the two numbers from each other.

Since we are only interested in how far the try is off, the abs() command is used which returns

the absolute value of its argument. Finally, the difference is stored in a variable called

“difference”.

 There are more global commands like abs() available, see the documentation browser,

references > global commands.

iinntteeggeerr ddiiffffeerreennccee((aabbss((vvaalluuee -- ttrryy))))

Tutorial

7

6
Case-By-Case Analysis

This is where the actual case-by-case analysis starts. The feature “knows”

how good the user’s try was, but the user needs some feedback. This is

done by using an if/else block. The basic syntax and functionality is as follows:

Inside the parentheses following the if keyword there needs to be a logical statement that

evaluates the boolean value as true or false. The commands between the line starting with if

and the else keyword are executed if that logical statement is evaluated as true. If it is

evaluated as false, the commands between the else keyword and the endif keyword are

executed. Note that the else keyword is optional.

iiff ((<<ccoonnddiittiioonn>>))

 //// ccoommmmaannddss tthhaatt aarree eexxeeccuutteedd iiff tthhee ccoonnddiittiioonn iiss ttrruuee

eellssee

 //// ccoommmmaannddss tthhaatt aarree eexxeeccuutteedd iiff tthhee ccoonnddiittiioonn iiss ffaallssee

eennddiiff

Tutorial

8

7
Operators and Echo

Let’s have a look at the content of the different cases in the create

function.

The logical statement in this case compares the variable “difference” with the value “0” as that

would mean that the user has matched the generated number. If this statement is true the line

is executed which prints the success message to the console. However, if the difference is not

equal to “0”, the two lines

are executed telling the user that his try was wrong and what the actual value was. Note that the

second line uses the “+” operator to concatenate the string “The number I was thinking of was”

with the string representation of the integer variable “value”.

 The example uses the equality operator “==” to compare two values.

Other possible comparison operators are “!=” (inequality), “<” (smaller than), “<=” (smaller or

equal), “>” (larger) and “>=” (larger or equal than).

If you want to check multiple conditions at once, the following commands are available:

► “and(v1, v2)” is true when both, v1 and v2, evaluate as true

► “and([v1, v2, …, vN])” is true when all values v1 to vN are true

► “or(v1, v2)” is true when either v1 or v2 evaluates as true

► “or([v1, v2, …, vN])” is true when at least one of the values v1 to vN is true

eecchhoo((""NNoo,, tthhaatt wwaass nnoott tthhee nnuummbbeerr..""))

eecchhoo((""TThhee nnuummbbeerr II wwaass tthhiinnkkiinngg ooff wwaass "" ++ vvaalluuee))

eecchhoo((""CCoonnggrraattuullaattiioonnss,, yyoouu aarree ssppoott oonn!!""))

iiff ((ddiiffffeerreennccee ==== 00))

Tutorial

9

8
More Rewards

Although the game is very simple, it is very hard to win, so in order to

keep the user playing, we should add some more cases that reward the

user with a positive message.

► Go back to the create function tab of the feature definition editor.

► Select all text in the editor and paste the following code into it.

► Press apply and play the game again.

Instead of having only two cases (won/lost) it now includes five cases. Note the usage of the

elseif keyword. It behaves like a combination of else and if. If the previous condition does

not apply, the condition of the elseif statement is evaluated and, if it is true, the commands

following that line are executed until either else, elseif or endif is reached.

Another new statement is the break() command that was inserted into the if-block. It stops the

execution at that point. It avoids having the final message (echo the original number to the

console) since the user already knows the number.

iinntteeggeerr vvaalluuee((((rraanndd(()) ** 110000))..ttooUUIInntt(())))

iinntteeggeerr ddiiffffeerreennccee((aabbss((vvaalluuee -- ttrryy))))

iiff ((ddiiffffeerreennccee ==== 00))

 eecchhoo((""CCoonnggrraattuullaattiioonnss,, yyoouu aarree ssppoott oonn!!""))

 bbrreeaakk(())

eellsseeiiff ((ddiiffffeerreennccee << 55))

 eecchhoo((""TThhaatt wwaass vveerryy ggoooodd,, yyoouu aarree oonnllyy "" ++ ddiiffffeerreennccee ++ "" aawwaayy!!""))

eellsseeiiff ((ddiiffffeerreennccee << 1155))

 eecchhoo((""NNoott bbaadd.. TThhee ddiiffffeerreennccee iiss oonnllyy "" ++ ddiiffffeerreennccee ++ ""..""))

eellsseeiiff ((ddiiffffeerreennccee << 2255))

 eecchhoo((""OOkk,, bbuutt yyoouu aarree "" ++ ddiiffffeerreennccee ++ "" ooffff..""))

eellssee

 eecchhoo((""NNoott eevveenn cclloossee""))

eennddiiff

eecchhoo((""TThhee nnuummbbeerr II wwaass tthhiinnkkiinngg ooff wwaass "" ++ vvaalluuee))

Tutorial

10

9
Some Refactoring

Having a large number of if-cases can get quite confusing pretty fast. An

alternative is using the switch/case syntax:

► Go back to the create function and replace the text with the following:

► Press apply and test the game again (it should behave identically).

The value inside the parentheses behind the switch keyword is compared to the value(s) behind

the case keyword(s). If they are equal the commands following that case line are executed. If no

case applies the (optional) default branch is executed. If one case should apply to multiple

values (like in our game) they can be separated by commas. Now it should be fairly easy to

understand the new feature code.

The switch/case statement can be applied to all integral values (integer / unsigned integer) and

string values. It may not only make it easier to understand the control flow of the code, but

usually also results in faster execution compared to many nested if/elseif statements.

iinntteeggeerr vvaalluuee((((rraanndd(()) ** 110000))..ttooUUIInntt(())))

iinntteeggeerr ddiiffffeerreennccee((aabbss((vvaalluuee -- ttrryy))))

sswwiittcchh((ddiiffffeerreennccee))

ccaassee 00

 eecchhoo((""CCoonnggrraattuullaattiioonnss,, yyoouu aarree ssppoott oonn!!""))

 bbrreeaakk(())

ccaassee 11,,22,,33,,44

 eecchhoo((""TThhaatt wwaass vveerryy ggoooodd,, yyoouu aarree oonnllyy "" ++ ddiiffffeerreennccee ++ "" aawwaayy!!""))

ccaassee 55,,66,,77,,88,,99

 eecchhoo((""NNoott bbaadd.. TThhee ddiiffffeerreennccee iiss oonnllyy "" ++ ddiiffffeerreennccee ++ ""..""))

ccaassee 1100,,1111,,1122,,1133,,1144

 eecchhoo((""OOkk,, bbuutt yyoouu aarree "" ++ ddiiffffeerreennccee ++ "" ooffff..""))

ddeeffaauulltt

 eecchhoo((""NNoott eevveenn cclloossee""))

eennddsswwiittcchh

eecchhoo((""TThhee nnuummbbeerr II wwaass tthhiinnkkiinngg ooff wwaass "" ++ vvaalluuee))

	Case-by-Case Analysis
	New Feature Definition
	Arguments
	Create Function
	Types and Conversion
	Types and Conversion
	Case-By-Case Analysis
	Operators and Echo
	More Rewards
	Some Refactoring

